

ФИЛЬТРЫ МОДУЛЬНЫЕ С ПЛОСКИМИ КАРТРИДЖАМИ СЕРИИ FMP И FMPF

www.sovplym.ru

ФИЛЬТРЫ МОДУЛЬНЫЕ С ПЛОСКИМИ КАРТРИДЖАМИ СЕРИИ FMP И FMPF

- Модульная конструкция
- Производительность до 24 000 м3/ч

Системы самоочистки фильтрующих кассет

- Плоские картриджи эффективная регенирация и длительный срок службы фильтрующих кассет
- Удобная и быстрая утилизация пыли, собранной в пылесборник
- Специально разработаны для очистки аэрозолей сварки, плазменной и лазерной резки

- Полностью готовый к работе фильтр со встроенным вентилятором
- З базовые модели с номинальной производительностью 2000, 4000 и 6000 м³/ч

EMP

www.sovplym.ru

Установки FMP и FMPF представляют собой экономичные автоматические самочищающиеся фильтры с плоскими фильтровальными кассетами.

Исполнение

Обычное антистатическое

Установка

Внутри помещения с температурой не ниже $+5^{\circ}$

Типы очищаемой пыли

Любые виды сухой невзрывоопасной пыли

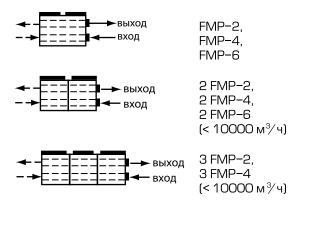
ОБЩИЕ ХАРАКТЕРИСТИКИ

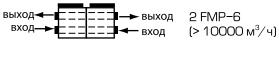
ПАРАМЕТРЫ	ОТ	до	
Температура очищаемого потока °C	_	80°	
Производительность по воздуху, м³/ч	1 000	20 000	
Начальная запыленность, г/ м ³	1	20	
Фильтрующая поверхность, м ²	32,5	292,5	
Скорость фильтрации, м ³ / м ² мин. (уровень падения)	0,6	1,4	
Потери давления на фильтре, Па	(см. аэродинамические характеристики стр. 7–9)		
Фильтровальные элементы	складчатые карманы (кассеты)		
Способ регенерации	импульсная продувка сжатым воздухом		
Давление сжатого воздуха, атм.	5,5	6	
Расход сжатого воздуха (свободного), м ³ /ч	8,5	8,5	
Эффективность очистки (в зависимости от фильтрующего материала; дисперсного состава очищаемой пыли), %	97	99, 8	
Напряжение питания	220 В, 50 Гц пульт очистки фильтров	3ф 380 В, 50 Гц вентиляторы	

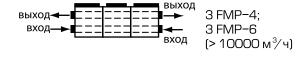
ФИЛЬТРЫ FMP

Фильтры FMP предстваляют собой базовые модули

FMP-2 10 кассет с $F\phi$ =32,5 м 2 производительностью*1200 – 2700 м 3 /ч

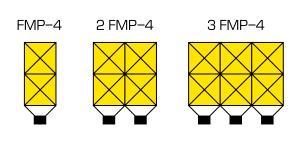

FMP-4 20 кассет с $F\phi$ =65 м² производительностью* 3100 – 5500 м³/ч


FMP-6 30 кассет с Fф=97,5 м² производительностью* 4700 - 8000 м³/ч

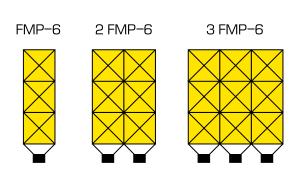

и их объединение в группы до Зх модулей (модельный ряд)

* Производительность зависит от применения и типа фильтрующих кассет

Схемы обвязки фильтров по воздуху (вид сверху)



МОДЕЛЬНЫЙ РЯД ФИЛЬТРОВ FMP


Базовый модуль FMP-2

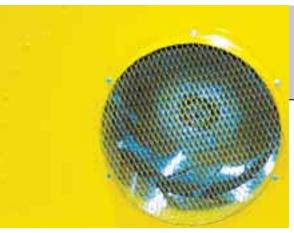
Базовый модуль **FMP4**

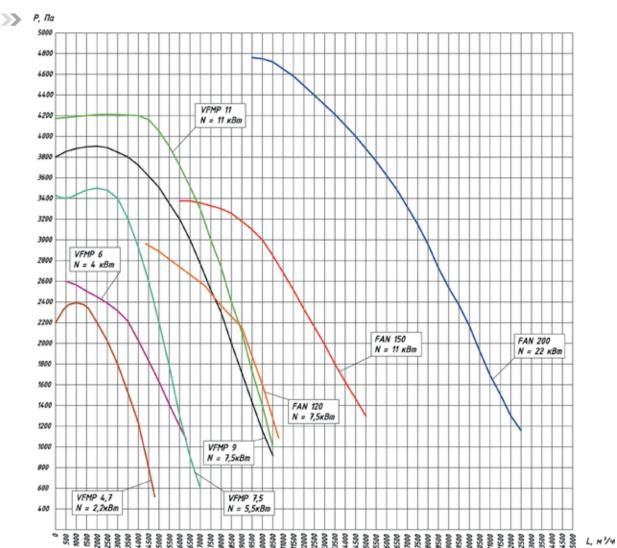
Базовый модуль **FMP6**

ФИЛЬТРЫ FMP

Fф – площадь фильтрующих кассет

Vф – скорость фильтрации


L- производительность


ХАРАКТЕРИСТИКИ

ТИП ФИЛЬТРА	F ф м²	V ф [*] м³/м²мин.	L м³/ч	ø входного и выходного патрубка, мм
FMP-2	32,5	0,8 1,1 1,4	1500 2100 2700	250
2 FMP-2	65	0,8 1,1 1,4	3100 4300 5500	400
3 FMP-2	97,5	0,8 1,1 1,4	4700 6400 8200	400 500
FMP-4	65	0,8 1,1 1,4	3100 4300 5500	400
2 FMP-4	130	0,8 1,1 1,4	6200 8500 11000	400 500
3 FMP-4	195	0,8 1,1 1,4	9400 12800 16400	500 2 x 500
FMP-6	97,5	0,8 1,1 1,4	4700 6400 8200	400 500
2 FMP-6	195	0,8 1,1 1,4	9400 12800 16400	500 2 x 400 2 x 500
3 FMP-6	292,5	0,8 1,2	14000 20000	2 x 500

[※] Скорость фильтрации принимается в зависимости от начальной концентрации и дисперсного состава очищаемой пыли.

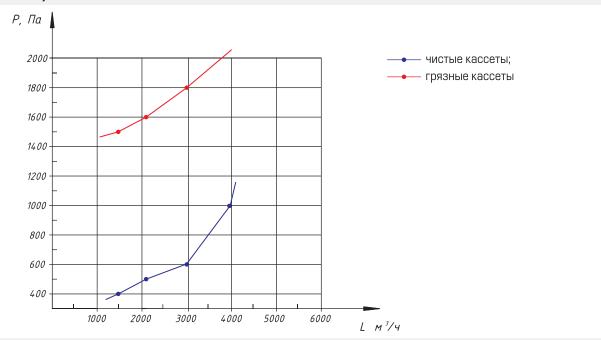
АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЕНТИЛЯТОРОВ ДЛЯ ФИЛЬТРОВ FMP

Вентиляторы серии FAN поставляются в шумоизолируемом корпусе и с частотным преобразователем скорости вращения вентилятора.

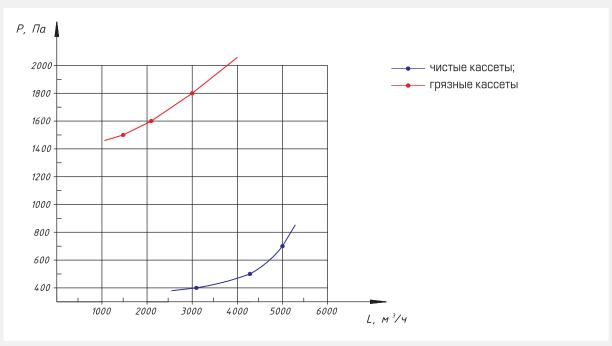
6

ФИЛЬТРОВАЛЬНЫЕ АГРЕГАТЫ FMPF

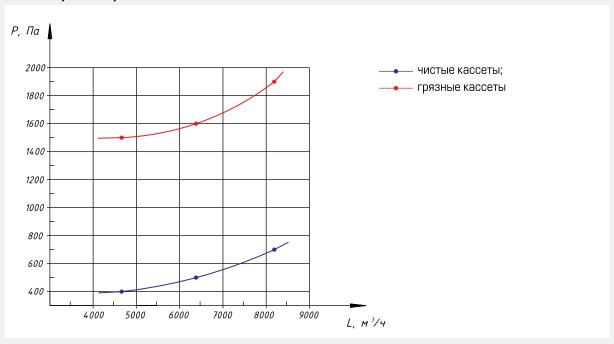
FMPF являются модификацией фильтров FMP со встроенным вентилятором, расположенным в верхней части фильтра. Входные и выходные патрубки расположены на задней стенке фильтра. Фильтровентиляционные агрегаты FMPF не объединяются в группы модулей и модельный ряд представлен базовыми модулями FMP с различными вентиляторами.

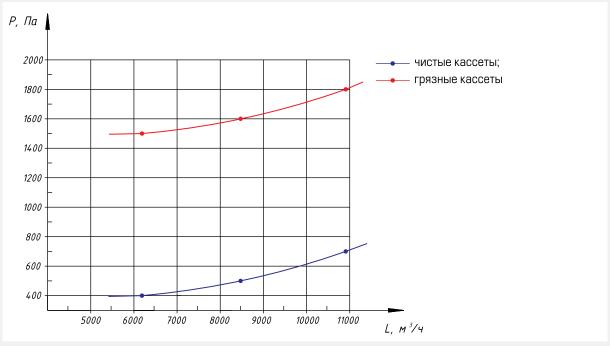


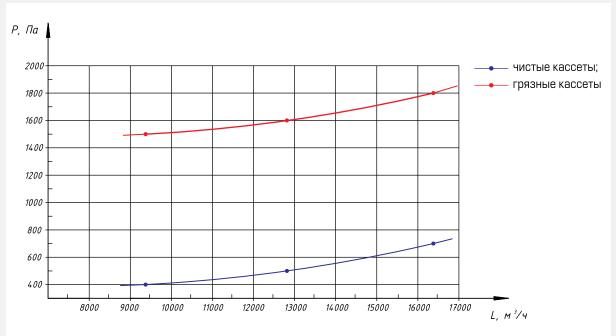
Модельный ряд фильтровентиляционных агрегатов FMPF

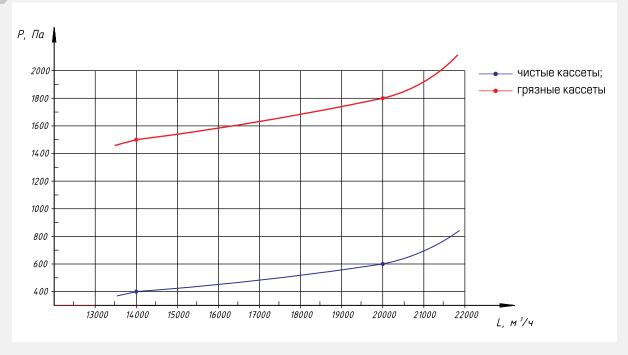

модель	ПРОИЗВОДИТЕЛЬНОСТЬ м ³ /ч При V ф м ³ /м ² мин.			ВЕНТИЛЯТОР	
	0,8 1,1 1,4			тип. N кВт	
FMPF-2 / 4.7 FMPF-2 / 6	1500	2100	2700	VFMP 4.7 VFMP 6	2,2 4,0
FMPF-4 / 6 FMPF-4 / 7.5 FMPF-4 / 9	3100	4300	5500	VFMP 6 VFMP 7.5 VFMP 9	4,0 5,5 7,5
FMPF-6 / 9 FMPF-6 / 11	4700	6400	8200	VFMP 9 VFMP 11	7,5 11

АЗРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ФИЛЬТРУЮЩИХ КАССЕТ ФИЛЬТРОВ FMP, FMPF


FMP2, FMPF2


2 FMP2, FMP4, FMPF4


3 FMP2, FMP6, FMPF6


2 FMP4

3 FMP4, 2FMP6

3 FMP6

сти, заменяется целиком в сборе. Материал кассеты прогофрирован для увеличения площади фильтрующей поверхности.

Установка FMPF (FMP) может комплектоваться фильтрующими кассетами из

различных фильтрующих материалов, в зависимости от применения, типа пыли и

загрязняющих аэрозолей. Конструкция кассеты неразборная и, при необходимо-

Площадь фильтрующей поверхности кассеты – 3,25 м²

Типы фильтрующих материалов используемых в установках FMPF (FMP):

- Полиэстер (NA909)
- Полиэстер с антистатическим покрытием (NA 909 ALU)
- Полиэстер ламинированный РТFE (NA 800)

Эффективность фильтрации составляет 99,7% -99,9% по классу BIA-M, согласно DIN EN 60335-2-69.

Так же по специальному заказу возможна установка кассет с влаго-маслостойкими фильтрующими материалами.*

* В этом случае обязательна консультация со специалистами ЗАО «СовПлим».

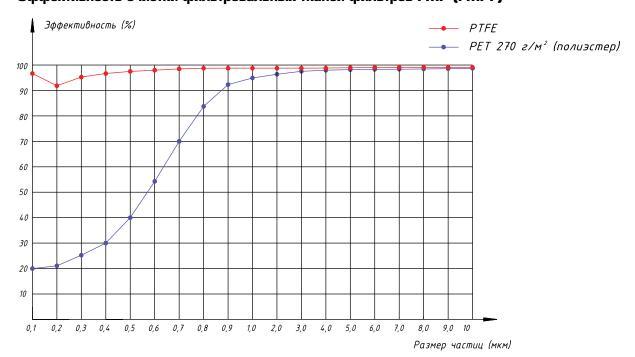
Возможные виды применения фильтрующих материалов:

- 1) **NA 909** Все виды сухой, невзрывоопасной, неволокнистой, сыпучей пыли **с преобладающими размерами частиц в диапазоне от 1 мкм и более.**
- 2) **NA 909** (ALU) тоже, что **NA 909**, а также для пыли подверженной электростатическому заряду в процессе технологического цикла или транспортировке по воздуховодам.
- 3) **NA 800** для пыли и аэрозолей выделяющихся в процессе плазменной и лазерной резки, графитовой пыли, или пыли с преобладающими размерами частиц в диапазоне от 0,1 до 1 мкм.

Рекомендации по применению FMP как фильтрующего элемента системы венти-ляции:

Производственные процессы, оборудование

- дробеструйные и пескоструйные агрегаты
- шлифовальное и полировальное оборудование (возможно с пастой ГОИ)
- зачистное оборудование
- металлоообрабатывающее производство
- камнеобрабатывающее производство, грохоты дробилки, конвееры, места пересыпок
- сварка, лазерная, плазменная, газовая резка(при использовании фильтров FMP(FMPF) необходимо предусматривать меры по искрогашению (искрогасители, циклоны, камеры расширения).


Так же для улавливания газовых составляющих (HF, NOx) при начальной концентрации до $5\,\mathrm{Mr/m}^3$, возможна установка второй ступени очистки – ионообменный фильтр ИФК (при установке второй ступени высота фильтров увеличится на $400-600\,\mathrm{mm}$).*

* В этом случае обязательна консультация со специалистами ЗАО «СовПлим».

Пыли

- асбест
- свинец
- ЦИНК
- сажа
- графит
- резина
- кожа
- пластик
- кварцевый песок
- металлическая пыль
- мел
- сухие невзрывоопасные пыли покрасочного и химического производства
- цемент (с начальной концентрацией до 2 г / м³)
- сухие строительные смеси
- удобрения

Эффективность очистки фильтровальных тканей фильтров FMP (FMPF)

ГАБАРИТНЫЕ РАЗМЕРЫ БАЗОВЫХ МОДУЛЕЙ FMP (FMPF)

	FMP(F) – 2	FMP(F) – 4	FMP(F) – 6
Габаритные размеры, Шир. х глуб. х выс. мм	1335x1535x2000	1335x1535x2590	1335x1535x3250
Габаритные размеры, Шир. х глуб. х выс. мм	1396x1680x2300	1396x1680x3070	1396x1680x3770
Масса FMP, кг	550 720		930
Масса FMPF, кг	600	800	1000

^{★ –} ионообменный фильтр

КОНСТРУКЦИЯ

Описание конструкции

Фильтровентиляционные установки серии FMP(F) состоят из прямоугольного фильтрующего блока **1**, установленного на *опорную раму* **7**, системы встряхивания бункера и пылесборника. Фильтрующий блок фильтра разделен на камеру очищенного воздуха, доступ в которую осуществляется через две большие двери на лицевой стороне и расположенную за ней камеру неочищенного воздуха. Камеры очищенного и неочищенного воздуха разделены щелевой плитой. В щели этой плиты вставлены фильтрующие кассеты. Кассеты закреплены на плите специальными скобами и с тыльной стороны прихватами, чем обеспечивается абсолютная герметичность между чистой и грязной камерами фильтра. К нижней части корпуса к камере неочищенного воздуха прикреплен бункер, который герметично соединен с пылесборником 6. К стойкам опорной рамы с лицевой стороны прикреплен ресивер 🛭 для сжатого воздуха, в который встроены трубки с 10-ю электромагнитными клапанами 10, которые, в свою очередь, соединены с трубками-распылителями 4 через специальные муфты.

На ресивере установлен влагомаслоотделитель 11 с редуктором и манометром. С тыльной стороны корпуса расположен входной патрубок 12 фильтра и выходной патрубок 13. На боковой стенке корпуса установлен пульт запуска/отключения вентилятора 15 и пульт управления системой очистки 16. Вентилятор В встроен в верхнюю часть корпуса (для моделей FMPF).

Элементы очищающей системы

В систему встряхивания кассет фильтровентиляционных установок серии FMPF(FMP) входят следующие компоненты:

- ресивер сжатого воздуха
- электромагнитные клапаны
- инжектирующие трубки 4
- конфузоры 3
- фильтрующие кассеты

Ресивер

Ресивер сжатого воздуха выбран в соответствии с требуемым расходом сжатого воздуха для фильтра и имеет присоединительный патрубок (R1/2") к которому штатно на заводе подсоединён влагомаслоотделитель с редуктором и манометром.

Сеть сжатого воздуха подсоединяется ко входу влагомаслоотделителя через входное отверстие диаметром 1/2".

Рабочая температура	T max +70°C T min –10°C
Максимальное давление (избыточное)	8 атм.
Рабочее давление (номинальное)	6 атм.

Электромагнитные клапаны

Непосредственно к ресиверу через трубки, вмонтированные в него, подсоединены электромагнитные клапаны 10 в количестве 10 штук. Электромагнитный клапан (10) представляет собой импульсный мембранный клапан прямого действия (обладает большой пропускной способностью, длительным сроком службы, обеспечивает надежную и экономическую работу) со встроенной соленоидной катушкой.

Присоединительный размер	1"
Проходное сечение	25 мм
Диапазон температур	–20°С до + 80°С
Диапазон давления	0,5 до 8 атм.
Напряжение соленоидной катушки	24В 50 Гц
Класс изоляции катушки	F

К каждому из электромагнитных клапанов присоединена металлическая трубка с инжектирующими отверстиями, которые служат для вброса сжатого воздуха во внутреннюю полость кассет через специальные конфузоры, установленные непосредственно на фильтрующих кассетах.

Пылесборник

Пылесборник **6** представляет собой ёмкость — контейнер объемом 40 литров, для сбора отфильтрованной пыли. Пылесборник герметично соединен с бункером фильтра через быстросъемное соединение.

Вентилятор

Фильтры серии FMPF имеют встроенный вентилятор. Мощность вентилятора зависит от модели фильтра.

ПРИНЦИП ДЕЙСТВИЯ ФИЛЬТРА

Принцип фильтрации

В установках серии FMPF (FMP) используются фильтрующие кассеты с современными неткаными фильтрующими материалами, позволяющие использовать метод поверхностной фильтрации воздуха, заключающийся в следующем:

в начальный период работы (на новых кассетах) на внешней стороне фильтрующего материала образуется поверхностный слой пыли, сохраняющийся в процессе дальнейшей эксплуатации и препятствующий проникновению частичек пыли вглубь материала и накоплению в нем. Излишки пыли сбрасываются с поверхности материала импульсами сжатого воздуха высокого давления, генерируемыми специальной системой очистки и поступающими во внутреннюю полость кассеты.

При работе системы очистки первоначальный поверхностный слой сохраняется в течение длительного времени, и не увеличивается, т.е. не блокирует поверхность материала, не препятствует проникновению воздуха через фильтрующий материал.

Сопротивление фильтрующей кассеты (Δ P)остается постоянной в течение долгого срока эксплуатации и является основной характеристикой, позволяющей судить о степени загрязнения кассет и о необходимости их замены.

Принцип действия системы очистки

Электронный контроллер, установленный в *пульте* управления очисткой **16** генерирует последовательность импульсов с заданной длительностью (0,1-0,2 сек.) и тактовой частотой.

Каждый из импульсов поступает на соответствующий электромагнитный клапан 10, активируя его на время длительности импульса, тем самым клапан открывается и сжатый воздух из ресивера фильтра, через клапан 10, через трубку 4 и инжектирующие отверстия в этой трубке впрыскивается в конфузор фильтрующей кассеты 2 с очень большой скоростью,

создавая в конфузоре (3) разряжение. Вследствие этого дополнительный воздух из камеры очищенного воздуха фильтра поступает внутрь кассеты, раздувая фильтрующий материал, пыль с внешней стороны материала стряхивается, попадая через бункер в пылесборник Таким образом, последовательно очищается каждая из кассет фильтра. Для фильтра FMPF (FMP) период между импульсами сжатого воздуха устанавливается на контроллере.

>>

ЭЛЕКТРООБОРУДОВАНИЕ

Установки FMPF и FMP поставляются полностью всборе и готовыми к эксплуатации. Дополнительных работ по электромонтажу не требуется. Установки FMPF включают в себя:

- Пульт запуска / отключения вентилятора
- Пульт управления очищающей системой

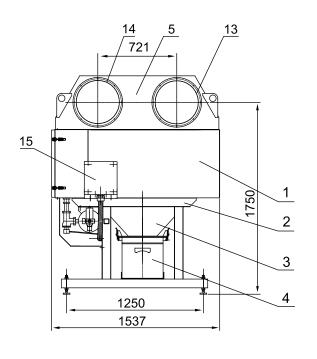
Пульт запуска / отключения вентилятора

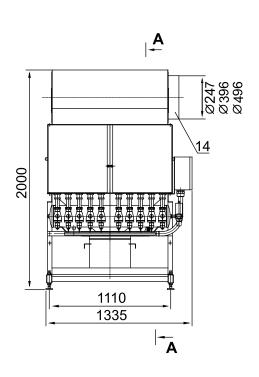
Пульт предназначен для плавного пуска вентилятора, защиты от пропадания фазы, перегрузки по току, защиты от короткого замыкания силового питания.

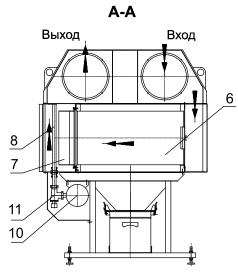
Пульт оборудован следующими органами управления и индикации:

- SB-1 выключатель «ОЧИСТКА» включение / отключение системы очистки
- SB-2 кнопка «ПУСК» вентилятора
- SB-3 кнопка «СТОП» вентилятора
- F1 выключатель силового питания (сеть 380 В 50 Гц)
- HL-2 индикатор «АВАРИЯ», загорается при перегрузке по току

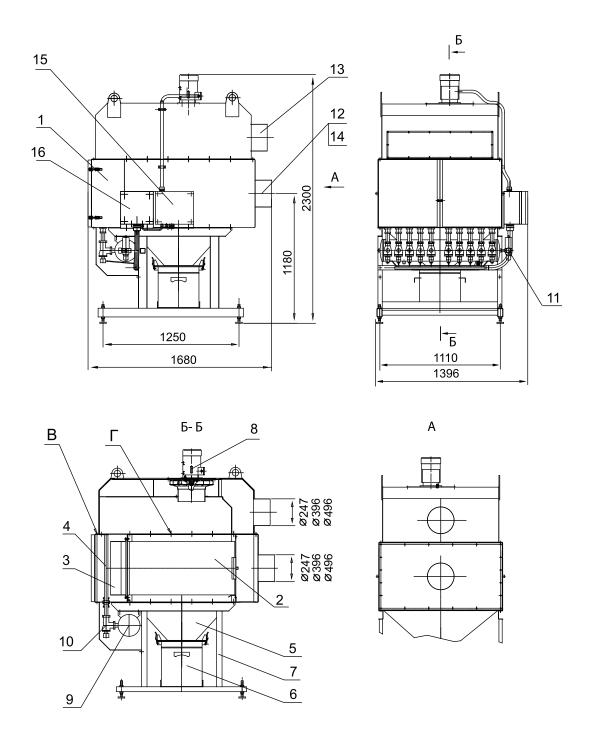
Для плавного пуска вентилятора, увеличения его срока службы, предотвращения повреждений при заклинивании и больших пусковых крутящих моментах используется устройство плавного пуска. Время пуска и торможения может регулироваться с помощью поворотных переключателей от 0,4 до 10 секунд. Пусковой крутящий момент может регулироваться от 0 до 85 % номинального крутящего момента.

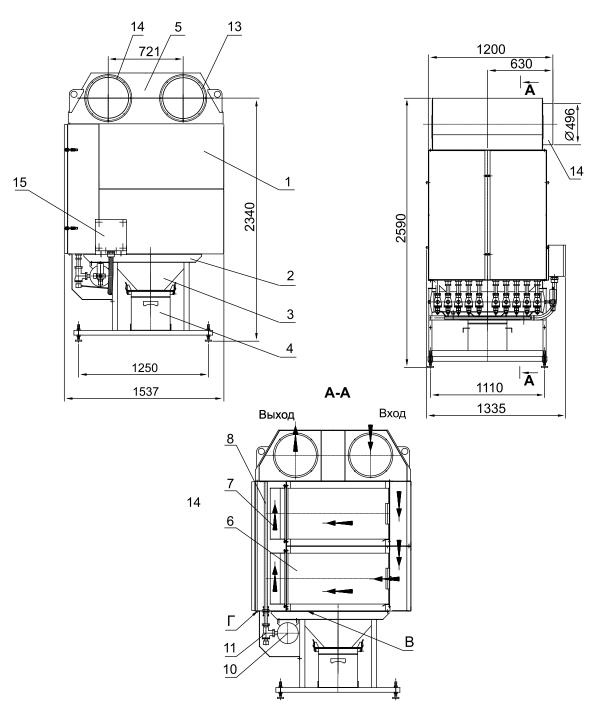

Пульт управления системой очистки


Содержит электронный контроллер, управляющий алгоритмом работы очищающей системы фильтра. На каждый электромагнитный клапан очищающей системы контроллер подает импульсный сигнал на включение.

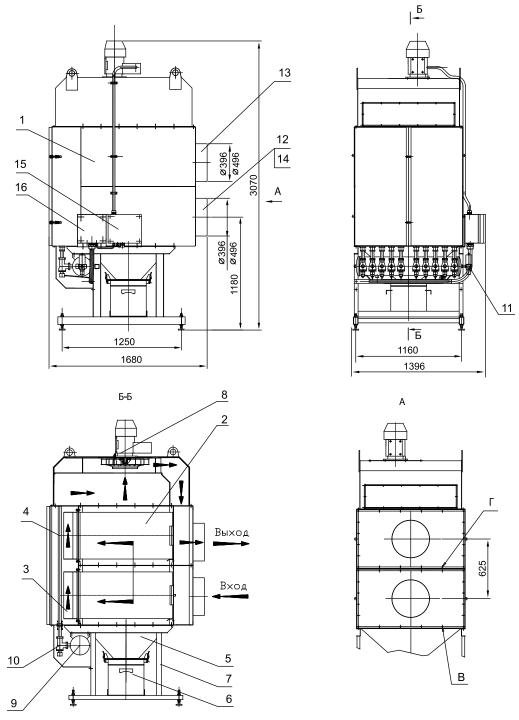

Предусмотрен режим работы — очистка при отключенном вентиляторе.

ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ ФИЛЬТРОВ FMP (FMPF)


>> FMP 2

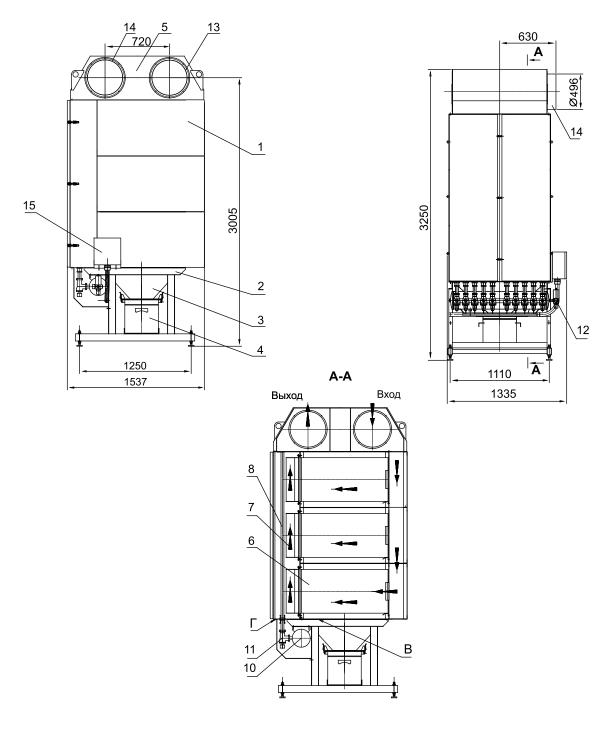


>> FMPF 2

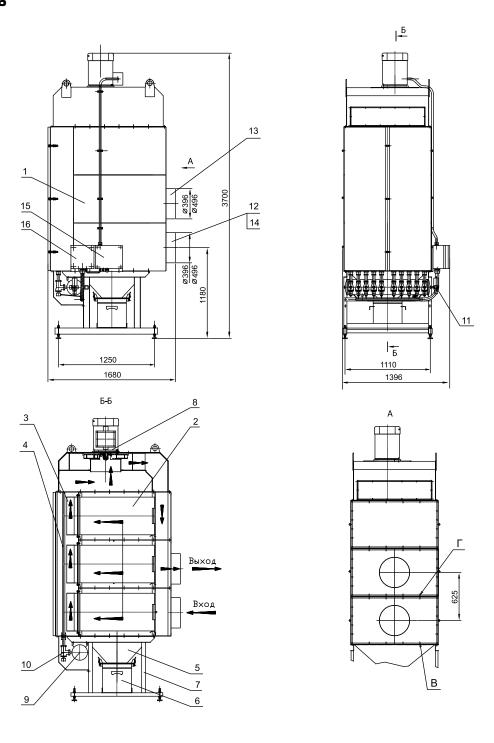


ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ ФИЛЬТРОВ FMP (FMPF)

>> FMP 4



>>> FMPF 4



ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ ФИЛЬТРОВ FMP (FMPF)

>> FMP 6

>> FMPF 6

СОДЕРЖАНИЕ

Общие характеристики	
Фильтры FMP	
Фильтрующие кассеты	
Габаритные размеры FMP(FMPF)	
Элементы очищающей системы	
Электрооборудование	. 11

www.sovplym.ru